電動車人才培育學程

課程講義

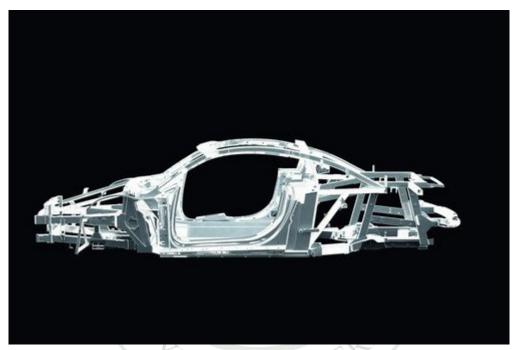
電動車結構系統安全與評估實務
The Evaluation of Structure and
Safety of Electric Vehicle

TO VAN UNI

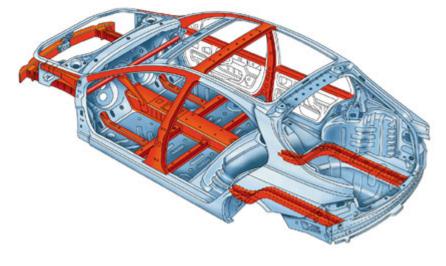
撰寫人 朱心平

目 錄

第一章 車輛結構簡介

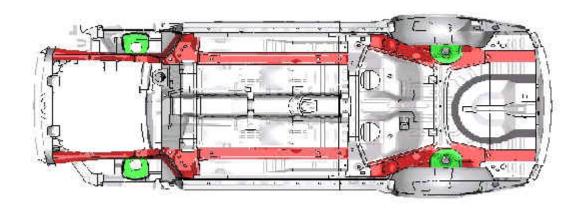

第二章 結構設計與分析

第三章 有限元素分析

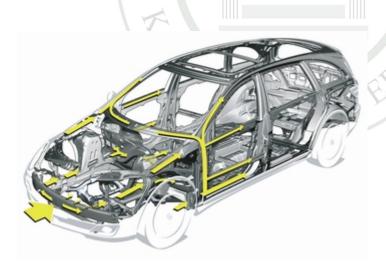

TO VAN U

第四章 實例研究

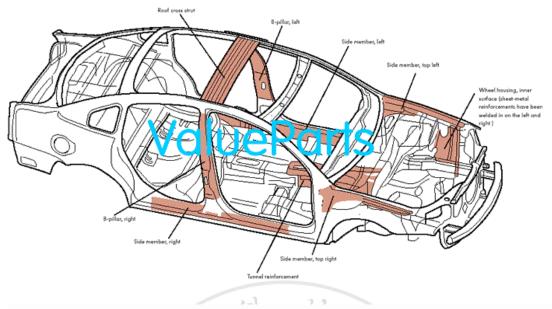
電動車結構系統安全與評估實務 數位教材



1994 年 Audi 推出革命性的 ASF (Audi Space Frame) 全鋁合金車體結構技術,以創新的空間桁架 概念結合質輕堅固的鋁合金材質,打造出比傳統鋼鐵車身更輕巧穩定的高剛性車身結構,並發表首部 採用這項新技術的第一代 A8 旗艦車款,當時即成爲全球車壇的創舉,也爲多年來汽車業無法有效減輕車身重量的難題,提供了具體的解決方案,同時將車重對於油耗經濟表現的影響降至最低。







爲了趕上國際車輛產業潮流,協助國內汽車產業提升設計與競爭力,國內第一座碰撞實驗室已經於民國 94 年落成啓用。至今相繼進行如座椅強度、汽車零組件安全性、實車碰撞、大客車車身各部規格及結構強度等多項破壞性測試,藉以與國際水準接軌,特別是對於汽車廠商,不分進口車或國產車的上市申請,不再是照單全收以保障國人購車與用路人的權益。

	車輛安全技術發展進程		A CRASH TEST L	
	70 年代	80 年代	90 年代	2000 年代
内裝安全技術	171內部物程推入	內部耐然性		
乘員保護技術	"7]前面碰撞	79 安全學真統	' 96 ∓	282
車體結構安全技術	171 年門车頂紡機		1' 95 AN A	發接所護
座椅安全技術	171度檢發度、類	於抗護		
燃油系統安全技術		系統完整性	94要组	天然汽系統定整性
前後方防護技術	1 1774	保险桿衡學防護		」' 05行人保
兒童安全防護技術		179兒妻安全保護	**	
轉向系統安全技術	MANAGE	'82韓向系統建 Parmews (97)		

依目前實施碰撞法規的審驗時程進度,凡是明年起在台灣銷售的車輛都必須通過這項碰撞法規新制,也就是說,不論是經由國內車輛中心(ARTC)的碰撞實驗,或是拿國外認證單位的撞擊測試報告提出申請,所有市售新車都必須在98年年底前取得國內新成立的「車輛安全審驗中心(VSCC)」的合格認證。

世界各主要先進國家爲維護道路使用者之安全性,分別對於車輛安全法規之研擬與推動、車輛安全之管理機制以及相關法規檢測與管理等事項,訂有明確之管理規範與運作模式。

台灣車輛安全法規調和方向為向 ECE 歐盟法規靠攏,這也符合世界主要趨勢。 且國內車輛管理分由三個機關管理(如下表),而國外除美國外均由單一機關管理。

國內外車輛型式安全審驗制度簡介表(資料來源 ARTC)

地 區/ 歐洲 日本 大陸 我國 美國 國 家 法 公路法/交通工具排放空 各國自訂法 規 道路運送 車 氣污物檢驗及處理辦法/ CFR 令及 1958 依 車輛容許耗用能源標準及Title49 輛法 協定 據 檢查管理辦法 法 保安基準 汽車強制性標 除部分項目因國情考量而 規 (自 1998 年起準 (ECE 法規 有差異,其餘項目已朝向FMVSS ECE · EEC 導入 ECE 法 爲主要參考對 項 ECE 調和 Ħ 規) 象) 權 DOT/ 締約體交通 交通省 交通部 交通部/環保署/能源會 NHTSA/ 主管機關 **EPA** 關 審 交通主管機 國家經濟貿易 交通部/環保署/能源會 國土交通省 機 關 委員會 構 業者自我 認證 檢 締約體認可 測 交通安全環 國家質檢局認 之車輛專業 主管機關授權之機構 機 境研究所 可授權之機構

機構

構

另外國外審驗與檢測分別由專責機構負責,且不涵蓋輔導車輛產業及技術研發之功能。目前台灣則是由 ARTC 檢測、VSCC 審驗分權負責,而 ARTC 更多了輔導車輛產業及技術研發,與國外的組織稍有差異。

身爲消費者,對於這些屬於車輛安全相關法規審驗與檢測的政策實務面措施,是 值得掌聲與認同的。然而進一步設想,消費者難道不希望能將所有測試結果公諸 於世?

自 ARTC 碰撞實驗室成立以來,已經有許多汽車產業廠家開始送測,累積至今已 進行逾 160 輛實車碰撞測試。

第一章 汽車結構

目前,汽車已成爲現代生活不可缺少的一種交通工具。在發達國家,汽車的普及已經達到很高的程度,平均每個家庭擁有各種汽車2~3輛。台灣汽車工業經過幾十年的風雨歷程,已形成一個比較完整的工業體系,但與國際汽車工業的先進水準相比,尚有很大的差距。我國汽車工業的發展,走過了引進技術、合資生產及國產化工作之路。目前國家的汽車產業政策已調整爲積極鼓勵各企業儘快形成自主開發能力,企業也深感爲適應汽車市場激烈競爭的需要,必須不斷更新車型,開發品牌,才能設計製造出適合顧客需求的產品。

車身在整個汽車結構中,不論就重量還是就成本而言,都佔有相當大的比重。車 身結構的合理與美觀直接影響到整車,車身結構設計直接決定整車的安全性、舒 適性、美觀性以及由車身外形與空氣動力性能決定的操縱穩定性、動力性、經濟 性等。國內外汽車生產的實踐也表明:整車生產能力的發展取決於車身的生產能 力,汽車的更新換代在很大程度上也取決於車身。

現代科學技術的迅猛發展,尤其是電子資訊技術的高速發展,工業生產方式正發生著巨大的變革,新的生產方式不斷產生。汽車工業作爲綜合性的大型產業,也必須順應這個發展趨勢。有限元分析技術在汽車工業中越來越廣泛的應用,正是這種趨勢的表現。在採用有限元分析技術以後,發達國家的新車開發週期已由原來的5年縮短爲24,----36個月。當今的CAD/CAE技術已經成爲衡量一個國家汽車工業技術水準的重要標誌之一,也是衡量一個汽車製造公司技術水準的重要標誌。它已成爲一個汽車公司開發新產品、組織規模生產、加強市場競爭的重要手段。在縮短產品開發週期,提高產品性能、品質和可靠性,實現車身結構輕量化等方面,有決定性作用。

1.1國內外研究現狀

1 · 1 · 1 CAE分析技術在汽車設計中的應用

以有限元分析方法爲代表的CAE技術已應用於對車輛的各種模擬和各種分析方法之中,從汽車結構的強度分析,設計的剛度與變形分析,設計的應力與疲勞分析,動力學特性分析到碰撞模擬,塑性變形分析,聲場分析等等,包括汽車設計的整個過程,使我們在汽車還未製造出來之前就對整車的特性有了一個詳細的瞭解。

CAE是一個很廣的概念,可以包括工程和製造業資訊化的所有方面,傳統的CAE主要是指用電腦對工程和產品的運行性能與安全可靠性分析,對其未來的工作狀態和運行狀態進行類比、及早地發現設計計算中的缺陷,並證實未來工程、產品功能和性能的可用性和可靠性。分析的目的主要是:分析結構缺陷部位原因並尋找改進途徑;進行結構的最優化方案設計。現如今,汽車結構CAE分析的發展已經分工十分精細,包括汽車結構的靜態和動態特性,NVH特性,碰撞特性等。具體來說,CAE分析技術在汽車上的應用主要包括以下幾方面:

- (1)靜力學分析(強度與剛度分析)
- (2)特徵值分析(固有頻率與模態分析)
- (3)穩定性分析(整體與局部的屈曲失穩分析)
- (4)耐久性分析(疲勞與斷裂分析)
- (5)舒適性分析(振動與雜訊分析——聲振偶合)
- (6)安全性分析(碰撞分析——非線性順態回應)

(7)板成型分析(冷衝壓成型工藝性)

應用有限元法進行結構分析能有效地解決結構設計的要求,在汽車結構設計中顯示出了強大的能力,並有極其重要的地位。

1.2國內外車身結構分析的發展概況

現代轎車絕大多數都採用承載式車身結構,車身的結構直接影響轎車的力學特性,因此,轎車車身的結構分析就顯得尤爲重要。轎車車身的彎曲剛度、扭轉剛度和模態頻率是車身最基本的力學性能指標,對轎車車身性能的諸多方面都有很大的影響。應用有限元法對轎車車身結構基本力學性能進行分析能有效地解決轎車車身結構設計中的缺陷。

通常所說的CAE(Computer Aided Engineering)——電腦輔助工程,就是指有限元分析方法與工程結合。有限元法用於汽車設計與分析,是從近二、三十年才開始的。

早期的汽車結構分析主要是對汽車結構的經驗判斷和試驗模擬,應用經典的力學方法進行零部件的材料強度剛度計算。而對轎車車身這樣的複雜的大型連續彈性體來說,經典的解決方法就顯得無能爲力,不可能得到有意義的理論分析結果。車身整體力學特性只能在製作出樣車後進行一系列的複雜試驗得到。

在國外,1966年美國的汽車工業部門頒佈了公路安全法案和國家交通與汽車安全法案,這個法規提出了最早的汽車安全標準。1970年以後,隨著大型計算機的出現,標誌著以分析驗證爲基礎的汽車結構設計革命的開始。而1970年有限元軟體NASTRAN的引入,標誌著以有限元分析爲基礎的汽車結構設計與分析的開始。自此,國外就開始運用有限元技術對車身結構進行靜動態特性分析,對應於車身結構設計的概念設計階段、結構設計階段及不同的分析目的,選用不同的單元、不同的模型規模進行車身結構分析。早期的分析集中在最初設計階段的粗

略白車身模型上,通常採用以梁單元爲主的框架結構模型;隨著軟硬體技術的發展和試驗條件、分析手段的提高,後期分析的模型已經包括懸架、發動機、輪胎和轉向機構等汽車構件。對結構細部的研究不斷深入,研究重點已集中在提高車身的NVH性能上,模型的規模和求解精度也得到了很大的提高。

我國對汽車結構的研究已經積累了一些經驗,包括有靜態、模態等多方面的計算以及對結構的優化,如九十年代初吉林大學對汽車車架計算方法和結構優化變數方面的研究;上海大眾與外方合作開發了桑塔納2000型轎車,並由同濟大學對它的白車身進行了剛度研究,成功地進行了修改方案的比較並選擇出最佳方案。當前汽車結構的分析研究一般借助於CAE(電腦輔助工程)技術,CAE技術在國汽車業的應用經歷了入門、推廣、普及等階段,目前已經到了取得實質效益的階段,具體表現在:

- (1)CAE技術被普遍認可,其分析方法的準確性和精確性已得到普遍認可:
- (2)CAE分析和工程設計緊密結合,實現了分析與設計的同步;
- (3)CAE分析範圍擴大,分析物件從以前的單個零件發展到現在的總成系統、整 車系統;從線彈性分析發展到非線性分析和多物理場藕合分析;
- (4)CAE軟體向專業應用方向發展,簡化了分析方法,提高了CAE應用效益,這 對汽車企業開發能力的建立和提升具有重要意義。
- CAE模擬技術的應用改變了傳統的設計方法和流程,使汽車產品的大多數問題都可以在設計階段通過模擬得到解決,從而提高了設計品質和效率,大大降低了開發時間和費用。但是與國外的車身結構分析相比還存在著許多的不足,主要表現在:
- (1)車身結構開發工作主要還是依賴於經驗和解剖進口結構進行參照性設計的, 多用來解決樣車試驗以後出現的設計問題,設計與分析未能真正做到並行;

(2)有限元分析主要應用在結構的強度和剛度和動態分析方面,在碰撞、振動、 雜訊、外流方面模擬計算還沒有全面的發展起來。

只有真正認識到與發達國家的差距,而在產品開發早期階段採用現代設計分析工 具,預測轎車靜動態特性,並進行結構優化決策,從而多方面研究完善並積累自 己的經驗,才能真正提高技術水準和自主開發能力。

1.3現代汽車車身結構設計的特點

現代汽車車身結構設計已經呈現以下特點:

- (1)輕量化成爲車身結構設計所普遍追求的目標。輕量化的研究最早是從Volvo汽車公司的LCP(the Volvo Light Component Project)2000開始的。雖然它的出現是上世紀七十年代的兩次石油危機造成的,但美國鋼鐵研究所推出的ULSAB(the Ultra Light Steel Auto Body)和奧迪汽車公司推出的Audi AS鋁制車身卻完全地表明,在激烈的市場競爭中,設計出品質更輕、成本更低的車身已成爲一種有力的競爭手段。
- (2)舒適性和安全性仍是車身結構設計中所考慮的主要內容。八十年代以來,承載式(包括帶有副車架的)車身結構形式已成爲轎車車身的主要結構形式,而這種車身結構形式所帶來的乘坐舒適性的影響,又重新吸引了眾多車身工程人員的注意。承載式車身結構形式的採用不僅對舒適性有影響,而且對安全性也有影響,隨著公眾對安全性認識的提高,安全性能也成爲一種有力的競爭手段。
- (3)利用現代車身工程手段,縮短車身結構的開發週期。縮短整車的開發周期, 已成爲各汽車製造商提高自身競爭力一項重要舉措。車身結構開發週期的縮短,

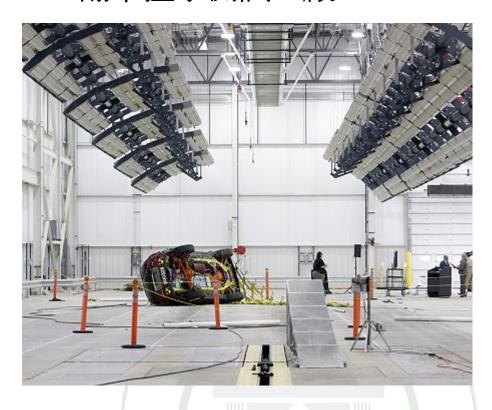
不僅可以節省產品開發費用,還可以提高企業對瞬息萬變的市場的適應性,在市場競爭中以快取勝。

- (4)在汽車車身結構設計過程中,設計與分析並行。車身結構分析參與車身結構設計的各個階段,貫穿整個設計過程,從一開始的構造選擇,爲結構設計提出具體的性能參數要求,到具體設計方案的比較確定,設計方案的模擬試驗。這樣確定的車身結構設計方案,基本上就是定型方案,據此試製而成的樣車,只需一定的驗證試驗即可定型。這樣,車身的研製週期被大大縮短了。
- (5)優化的思想在設計的各個階段被引入。對輕量化的要求和對舒適性及安全性要求的不斷提高,使車身設計的難度越來越大,優化設計的思想能有效地縮短轎車車身的開發週期。

對應于現代轎車車身結構設計的以上特點,現代轎車車身分析就越來越重要。現代轎車車身分析買穿於車身結構設計的整個過程的每一個方面,對轎車車身的諸多方面都有很大的影響,比如車身結構可靠性和耐久性、車身NVH性能、結構輕量化、車身密封性、轎車的靜態和動態特性、以及車身動力特性等。

在現代轎車開發過程中,無論是改進車型還是全新的車型,在車身開發過程中都要投入相當多的人力和物力,其重要性可見一斑。在車身實體試製前,爲了在車身設計過程中就能掌握車身的結構性能,以有限元法爲代表的車身結構CAE分析就必不可少了。在車身CAD幾何建模的基礎上,採用有限元建模工具建立白車身有限元模型,分析車身結構的靜動態性能,在通過試驗驗證並修改有限元模型後獲得的比較精確的模型,就可以爲後續的車身動態和碰撞性能分析提供可靠的保證。對於分析過程中發現的車身結構方面的缺陷,設計人員通過優化和反復分析提出最終的優化方案,從而指導車身的設計。毫無疑問,通過車身結構的有限元分析,只要建立的模型足夠精確,分析的工況與實際相符,其結果具有較好的元分析,只要建立的模型足夠精確,分析的工況與實際相符,其結果具有較好的

可信度,在此基礎上提出的優化方案就可以大大加快車身的設計開發速度,縮短整車開發週期,節約成本。


利用CAE方法建立汽車結構動態性能分析的有限元模型,對其進行了整車或零部件結構動態性能分析。本課題涉及的主要內容是轎車白車身結構中的發動機艙蓋的有限元分析及優化設計。主要內容如下:

- (1)首先介紹了有限元技術的概念、理論和分析流程、結構模態分析的基本原理, 並對三維設計軟體CATIA V5及相關有限元軟體進行了闡述。
- (2)對車身結構進行了詳細介紹,對車身結構的力學特徵和主斷面設計方法進行了較爲系統的分析。
- (3)詳細敘述了建立發動機艙蓋動態性能分析模型的步驟,重點對有限元建模過程中的關鍵技術問題的處理進行了詳細介紹。
- (4)對發動機艙蓋結構進行了自由狀態條件下的自由模態分析,利用模態分析結果對發動機艙蓋結構動態性能進行評價。
- (5)對發動機艙蓋進行了靈敏度分析,根據分析結果,對其結構進行了優化設計, 實現其結構的優化設計和輕量化目標。

本文有限元分析過程的論述爲汽車行業內的相關研究積累了一定經驗;對模型進行模態分析,提取低階模態頻率值,並以提高低階模態頻率值爲目標,進行了靈敏度分析,根據靈敏度分析結果,對低階模態頻率影響較大的發動機艙蓋內板進行了優化設計。該分析流程適合所有模型,從而建立了白車身優化分析的一般方法。該分析爲同類分析積累了一定的經驗和技術資料,且該分析資料對同類車型具有一定的參考價值,對車身的結構設計具有一定的指導意義。

GM 翻車撞擊測試工廠

之前 AutoNet 曾經報導過,美國車廠 GM 將投資一千萬美金在車輛頭部防護的部分,而在這整個安全防護的部分中,最重要執行的地點莫過於 GM 最近開幕的翻車撞擊測試工廠,而這家新的工廠將成爲北美車廠第一家由車廠自行測試的工廠。

所有在美國發生的車禍中,翻車事故雖然所佔的比例不高,致死率卻比其他事故高,因此 GM 砸下鉅資,預計發展出配有翻車感應器的防護氣囊,能夠在保護乘客在翻車意外時,藉由氣囊防護減少致死率;並且因為 GM 自行研發測試將可以增加效率,同時節省金錢。

整個撞擊測試工廠佔地約 38500 平方英尺,預計每年會有 600 輛車款的撞擊測試,包括所有 GM 在全球銷售的車款,從明年開始一年將會有 150 次至 200 次翻車撞擊測試,在測試的同時還會運用高速攝影,以利事後做詳細分析。

在這座新工廠的翻車測試中,將有多種形式翻車測試,包括側邊滑行翻車、全車翻滾翻車等;藉由不同翻車形式,了解以什麼方式將傷害減至最低,也將參考多方測試數據,包括 IIHS 曾在今年發表過,如果備有電子動態車身穩定系統 (electronic stability control)將能夠避免 80%的車身側面翻車事故。

所以 2012 年之後,所有 GM 的車款都將配置側邊簾幕氣囊,並且在 2009 年所有 GM 的輕型卡車車款都將配置翻車防護氣囊,而現在翻車防護氣囊正在調整爆開的時間點,正在調整是在撞擊後 5 秒或者 0.3 秒後爆開。

結構安全組合執行總監 Bob Lange 表示,翻車防護氣囊將能夠帶來象徵性的不同,能夠對未繫安全帶的乘客或者坐在兒童座椅的兒童有所幫助,將能夠減少嚴重的傷害。

未來安全系統將主導駕駛避開事故

加速行駛的車輛在道路上就是一把利刃,所以車輛安全一直是各大車廠想要跟消費者溝通的部分,因此如果有撞擊測試得到五顆星,各家車廠通常都會拿來大肆宣揚一番,表示自家車輛很安全。

之前美國權威性的道路安全協會 IIHS 報告指出,致命的交通意外事件正在減少當中,一切都得歸功於汽車日新月異的安全設計;是的,汽車的安全系統正在一步步進步當中。

而且最近德國 Fraunhofer 學院的專家指出,未來汽車安全系統的研究方向,將由目前「降低事故的破壞性」轉變爲「避免事故發生」;只要發生事故,或多或少總是需要花錢消災,或者難免有皮肉傷,即使因爲車輛安全結構幫你擋掉大部分的傷害。

所以如果能夠避免事故發生或許才是最好的方法,所以專家預測汽車智慧安全系統將可以感知即將發生事故,主動採取干預措施,並且最新的趨勢是建立道路整體的安全系統,感應器將能夠蒐集車輛、乘客及週遭環境的資料,組成龐大資料網,爲駕駛提供最全面的安全指導;不過在此前提,或許駕駛本身也是一個重要因素,例如酒駕、意識不清及打瞌睡等。

愈來愈多車廠對於 SRS 輔助氣囊的多寡投注大筆資金,而消費者也似乎認爲氣囊愈多愈安全,殊不知一輛車的車身結構及輔助安全配備,都是人身保護的環節。

根據美國媒體的一項報導指出,氣囊不當的設計與瑕疵,已在 2001~2006 年中至

少造成 1,400 名乘客死亡,而多數狀況都是因前方撞擊發生時,氣囊無法有效充氣保護乘客,相關的數據也由美國 NHTSA 機構證實。

因此, 購車前別一昧地關注氣囊多寡, 更重要的是能將所有輔助安全措施全數發揮, 才能達到預期的安全防護。

就車身尺寸來看,嬌小的 Smart for 2 確實相當合適與都會的用車環境,雖然說室 內乘坐空間「理論上」僅能容納 2 人,但筆者也曾經在路上見過 4 人同時搭載的 奇特景象,雖然稍稍擠了些但就便利性而言,不小的承載空間、好停車的優勢, 加上平均每公升汽油能行駛 15 公里以上的經濟性,確實都相當符合都會用車習 慣。 此外就安全性而言,雖然車體尺寸迷你,但原廠仍巧妙設計 Tridion 安全車體結構,在一些關鍵結構上(50%車身面積)還採用高強度鋼板進行了強化處理,即使碰上強烈碰撞時,此車身結構也能有效保護駕駛與乘客免受傷害。比起一般房車甚至還有更高的安全等級。

第二章 提昇車體剛性

優異的底盤調校可以說是操控性能的重要指標,但這一切必須建立在「車體結構」 之上,因爲車身剛性的好壞,是一輛車出廠後的先天條件,雖然懸吊型式也是原 廠賦予的先天條件之一,但畢竟比較容易克服可以藉著更換避震器等方式,來改 善懸吊系統不足的問題。

原廠鈑件與鈑件之間,以及鈑件與主結構(樑或柱)間,因採自動化機械大量生產之故,往往會有很大的縫隙,這些縫隙通常會用防水膠或隔音膠塡滿,圖中即 為除膠後所露出的鈑件接縫

但車身剛性雖然也能藉由後天改裝來提昇,比如加裝拉桿、結構桿等來提昇車體 強度,不過幅度有限,要能大幅提昇車體剛性與強度其實也不是不可能任務,只 不過工程浩大,除非有特殊用途,比如說競技車輛,或者車台已經裂得不像樣了, 才會進行我們所要介紹的「全車點焊」!

原廠生產線鈑件間的接合採用熱壓熔接的方式結合在一起,圖中即爲熱壓熔接後的原廠焊點

談到這裡,大家不妨去想一個問題,既然剛性與結構強度如此重要,爲何原廠不做些改變?答案其實很簡單,原廠設計必須滿足絕大多數車主的需求,而非爲了某個特殊目的來「量身訂製」,其實原廠在特殊車款上,也有做類似的剛性補強動作,比如一樣是六代喜美,相同的車型,國產 K8 跟日規 Type-R 車台結構就大異其趣,甚至多了許多專屬配備,比如較粗的前後防傾桿、專用的引擎室拉桿與前下結構桿等,就連車體的材質也與一般版本不同。

加裝坊間所販售的結構桿或拉桿,爲提昇車身剛性最簡便的方式,不過因爲這些

結構與結構間的拉桿通常爲鋁合金製造,且固定幾乎皆爲「鎖螺絲」方式以便拆裝,故實際提昇的效果有限,但已經能明顯感受車體剛性提昇

就因爲日規 Type-R 本身屬於針對 N 組賽事所打造的原型車,這個就是上述所說的「特殊用途」或者「性能」車款,其實原廠也知道剛性的重要,但礙於成本與市場考量,無法盡如人意。

其實原廠有些車種配有強化剛性的結構桿,如圖中黑色橫桿即為流用自日規 Integra DC2 Type-R 車款的前下結構桿,此為日規 Type-R 車系專屬配備

點焊補強車體結構 前後避震塔需強化

原廠生產線所製造的新車車體,是由一塊所謂的「底板」搭配由引擎室一直到車尾的主樑(大樑),與其他不同部位鈑件所結合而成,其主要結構的支撐爲 A 柱、B 柱與 C 柱,這個由「樑」、「柱」、「底板」與鈑件組成的車體,是由機械手臂採焊接或重力壓模的方式結合而成,鈑件與鈑件的接合處有些則是用熱壓的方式結合在一起,再以機械手臂點焊來補強結構與結構間的接合處。

車體主結構中的「底板」並不是完全平整,而是採用壓模做出大量轉折,以營造出「結構」來提昇鈑件的強度與支撐性

但因爲採生產線量產的方式大量製造,因此會有許多死角,這些地方的鈑件其實並未完全緊密接合,且必須經過防水與隔音處理,因此會有一層厚厚塊狀的「隔音膠」(通常位於大面積鈑件),或條狀「防漏膠」(通常位於鈑件間或鈑件與主結構接縫處),以防止漏水同時減低車內噪音。

而在底盤朝向地面的一側,則會全數覆蓋一層很厚的「防撞膠」,以避免因摩擦 或碎石敲打而產生脫漆導致鏽蝕,這些不同的「膠」,正常代步使用下並不會有 太大的問題。

如果經常激烈操駕,久而久之鈑件會因受力過大而過度扭曲,產生撕裂的現象, 尤其是避震塔,在換上改裝避震器後,因爲不斷的撞擊最容易產生撕裂處,此外, 加粗防傾桿後,也很容易造成防傾桿固定橡皮附近的鈑件撕裂,這時若加以點 焊,就可以達到補強結構、分散受力點的作用,這就是車身點焊最重要的用意。

而最需要點焊的部位則爲前後避震塔,及輪拱附近,因爲這些是全車受力最大的部分,當然需要進行強化!

加粗防傾桿雖可提高操控,但過粗的防傾桿在作動時的巨大拉力,加上過彎時因 慣性所產生的側向 G 値,容易造成防傾桿固定橡皮附近的鈑件撕裂,且這種狀 況屢見不鮮,故此處亦爲點焊時的重點部位之一

STEP1.除膠

既然要作剛性強化,很多鈑件接縫部分必須重新加以點焊或強化,不過在點焊之前的第一個步驟,必須將原廠所有的隔音膠、防水膠以及防撞膠等等全數去除,這是點焊前的基本功,也是最重要的一環,因爲是否徹底除去這些「膠」,實爲點焊完工品質與效果的關鍵所在。

這也是最爲辛苦、繁瑣的過程,必須仔細清除所有接縫內的雜質,除膠之後還必 須加以打磨,最好能讓所有鈑件都完全「見底」,這樣在點焊時才能兼顧美觀與 效果。不過在除膠前,必須先將車上的線組、內裝、煞車油管路等等,全數拆個 精光、一樣不留。

1.除膠的順序一般都是由裡而外,由上而下,並沒一定的順序,不過車室內是最 簡單的地方,因此建議從這裡開始,且車室內底板上有很多大面積的隔音膠,一 定要清除乾淨

2.引擎室的大樑是點焊的重點所在,不管是防撞膠還是油漬,切記一定要清除乾淨

3.除膠完成的部位一定要加以打磨,一方面清除縫隙中可能殘留或沒清乾淨的殘 膠,另一方面可確保點焊時的美觀與完工品質

4.車室內與引擎室除膠完成後,必須將車身翻轉,繼續進行底盤防撞膠的去除工作,切記在翻轉時一定要讓車身置於地面,千萬不要使用所謂的烤肉架進行這個動作,因爲此時車身很脆弱,而且這項工程耗時頗長,長時間置於烤肉架上會導致車體變形,這是我們所不想見到的

5.俗稱內龜的輪拱部分爲點焊重點,尤其是避震塔內部,所有的防撞膠一定要完全除去,建議此時可採氣動工具搭配除膠劑一同使用,切忌貪圖快速採用火烤的方式

6.除膠完成後必須檢視鈑件變形處,如果可以盡量想辦法將其回復原位,或是讓 鈑件與鈑件間的縫隙縮小。若發現鏽蝕部位,在去除鏽蝕後最好立刻上一層噴 漆,以減緩鏽蝕部位擴散速度

7.除膠完成,可清楚看出鈑件幾乎完全見底,大部分的原廠塗裝皆已除去殆盡

CheckPoint

在翻轉車體時一定要確實固定,以防止直立的車體翻覆而前功盡棄,此外車身著地的一側一定要做些緩衝措施以分散重量分布,避免著地側鈑件變形的困擾,如何固定車身則可參考圖中所示範的方式。

STEP2.點焊

縮小鈑件間距結構強度提昇

除膠的步驟完成後,接下來就是重頭戲「點焊」步驟了,在這個步驟中,因為車身也必須要翻轉數次,因此同樣採由裡而外、由上而下的順序進行,這個步驟的重點在於提昇車體與結構的強度,建議採用俗稱 CO2 的「自動補料機」進行點焊工程。

若遇到結構強度不足的地方,則可用自動補料機來「填料」,再不然也可以自製外加的「結構體」,來提昇特定部位(如避震塔、內龜等)的強度。點焊完成後必須先送至鈑金廠烤漆,才能進行最後的組裝作業。

1.點焊必須使用俗稱 CO2 的「自動補料機」,千萬不可採用俗稱「阿魯猛」的高溫熔接機,以免溫度過高而破壞鈑件原有的強度與韌性

2.車室內的點焊重點爲駕駛艙周圍的鈑件接合處、座椅固定腳架、以及底板與 ABC 柱連接處,這些是攸關駕駛與乘客生命安全的部位,也是提昇操控路感的 最佳來源

3.車室內點焊的另一個重點就是後避震塔,由於這裡屬於全車受力最大的部位之一,且是鐵板與結構的交接處,因此必須「內外都點」,用焊點來製造結構,以 提昇剛性與強度

4.底盤的點焊重點同樣爲避震塔,由這裡可以很清楚的看出,避震塔的結構爲鈑 金與鈑金,以及鈑金與大樑所組成,加上圓弧造型、死角甚多,因此這裡的間隙 特多且縫隙特大,很多改裝避震器後的車輛容易在此處產生鈑金撕裂的現象,因 此一定要特別仔細地進行點焊強化

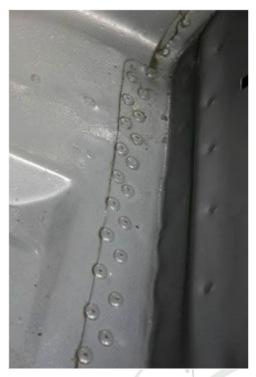
5.引擎室下方前大樑與車身鈑件接合處,則是全車最容易扭曲之處,因此建議焊點間的距離可以稍微密一點,但也不可太密讓車體過硬而失去應有的韌性

6.前軸的「牛擔」點焊則是操控提昇的關鍵,因爲這裡必須負荷整個懸吊系統的 受力,以及引擎的重量與換檔時的拉扯力道,故一定要加強剛性與強度,這是操 控表現優異與否的關鍵點

7.如同前述,當原廠結構強度不足時,可以「自製結構體」來加以補強,圖中即 爲施工者自行製作的葉子板拉桿,內龜的避震塔處則是以補鈑件的方式來增加厚 度,一方面增加剛性,另一方面也提昇原廠結構的強度

8.在點焊過程中,還必須不斷修整焊點的平整度,一方面是顧慮完工後美觀,另一方面則是維持焊點大小強度的均衡,在剛性與韌性中取得平衡點,讓剛性得以提昇,同時兼顧車身應有的韌性

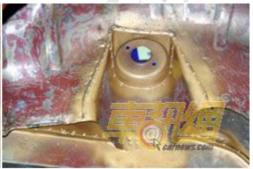
9.擋火牆與大樑接合處,原廠通常留有很大的間隙,這種地方就必須先以敲打整修的方式縮小鈑件間隙,再以 CO2 自動補料機進行「填料」,以縮小縫隙、增加鈑金間的密合度


10.若是競技設定的車輛,建議在大樑與大樑間加一些自製的強化結構,一方面可以提昇車體剛性,另一方面可確保激烈操駕時不小心的碰撞下,車體有足夠張力保障車內駕駛的安全

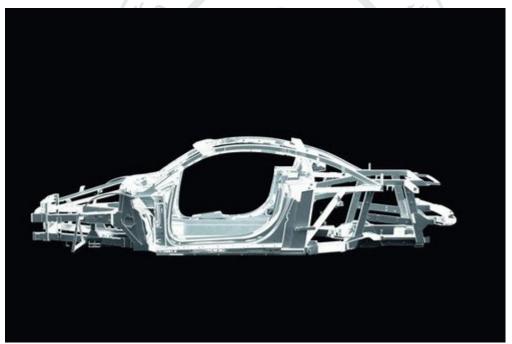
11.點焊完成後最好盡速送至鈑金廠進行烤漆,以避免裸露在空氣中的金屬鈑件氧化,造成鏽蝕讓所有已經完成的工作前功盡棄。圖中爲噴漆完成後的引擎室與車內,可清楚看出焊點間距皆相同,且點焊過的部分在烤漆過程中再度抹上與原廠相同的防水膠,以加強對車體的保護,防止鏽蝕再度發生

CheckPoint

車體結構強化與剛性提昇的作法其實還有其他方式,有人採用「鉚釘」取代點焊的作法,不過這種方式只能用在鈑件與鈑件接合處來提昇密合度,且必須先「打洞」再來拉鉚釘,等於作二次工,再者鉚釘必須使用不鏽鋼材質,不然很容易生鏽,因此也大幅提高製作成本,所以這種方式近來較少見。



CheckPoint

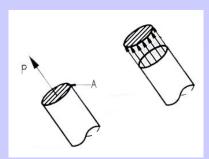

由於點焊工程並非短時間可以完成,故在點焊過程中,每完成一小部分隨即噴上一層噴漆,來隔絕空氣與裸露的鈑件,因爲在點焊時的高溫會導致金屬氧化的速度加快,所以必須藉由邊點邊噴漆的方式,來隔絕金屬鈑件與空氣的接觸,以減緩氧化速度。

SUZUKI Swift

1994 年 Audi 推出革命性的 ASF (Audi Space Frame) 全鋁合金車體結構技術,以創新的空間桁架 概念結合質輕堅固的鋁合金材質,打造出比傳統鋼鐵車身更輕巧穩定的高剛性車身結構,並發表首部 採用這項新技術的第一代 A8 旗艦車款,當時即成爲全球車壇的創舉,也爲多年來汽車業無法有效減輕車身重量的難題,提供了具體的解決方案,同時將車重對於油耗經濟表現的影響降至最低。

第二章 結構設計與分析

- ✓ 強度與剛性
- ✓ 外力的五種型態:
 - 張力
 - 壓力
 - 剪力
 - 彎矩
 - 扭轉力


正向應力

- ✓ 「應力(stress)」是機械材料受力之後的一 種狀態。
- ✓ 一截面積為A的桿件,兩端受到大小為F的 正向張力作用,此時整個桿件內應力大小 為:

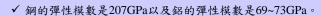
$$Stress = \frac{Force}{Area}$$

$$\sigma = \frac{P}{A} \quad (1)$$

- ✓ 正向應力可以分為張應力和壓應力。
- ✓ 應力的單位和壓力單位相同,為每單位面積之受力大小,公制單位為 N/m^2 (Pascal,簡寫為Pa)。
- ✓ 低碳鋼的降伏強度大約是200~500MPa。

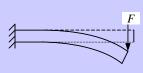


正向應變

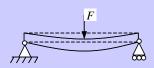

 \checkmark 「**應變(strain)**」是指材料單位長度的 變形量。 δ

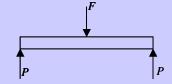
 $\varepsilon = \frac{\delta}{L} \quad (2)$

係式 $\sigma = E\varepsilon$ (3)

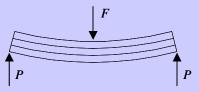


- ✓ 應力是因為材料發生應變而造成的狀態。
- ✓ 將三式組合,可以得到桿件在受正向力時,變形量和外力之間的關係如下式


$$\delta = \frac{FL}{EA} \quad (4)$$

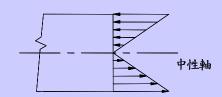

懸臂樑和簡支樑

✓ 「懸臂樑(cantilever beam)」和「簡支樑(simply supported beam)」受到方向與 桿件垂直的剪力時的變形狀態

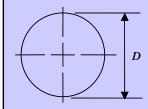


3

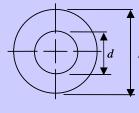
彎矩


✓ 彎矩造成彎曲變形,最內側受到壓縮,最外側則受到拉伸。

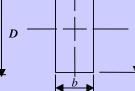
✓ 懸臂樑或簡支樑受到剪力時,仍然可能產生正向應力,其應力大小計算公式如下:


$$\sigma = \frac{My}{I} \quad (5)$$

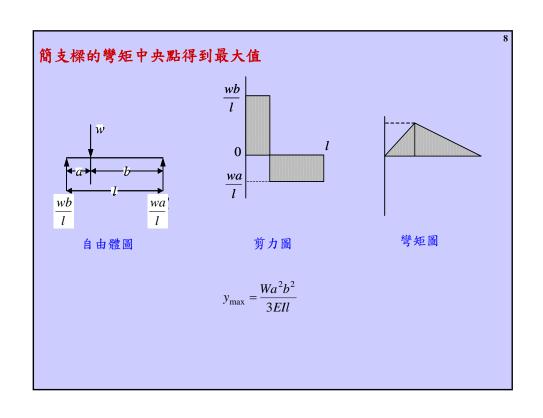
$$\sigma_{\text{max}} = \frac{Mc}{I}$$
 (7)

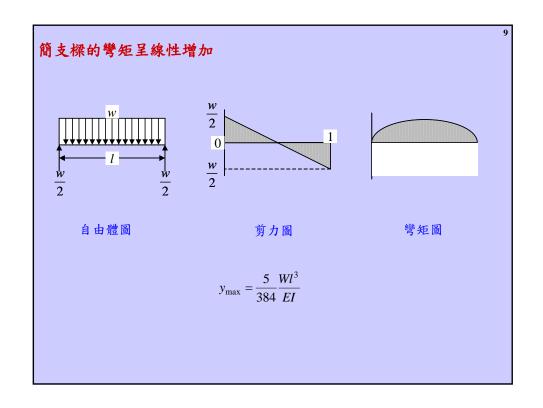


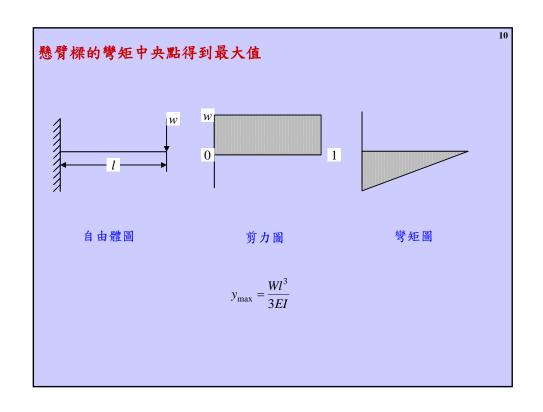
截面慣性矩與截面模數


$$I_x = \int y^2 dA$$
, $I_y = \int x^2 dA$ (6)

$$I = \frac{\pi D^4}{64}$$


$$I = \frac{\pi \left(D^4 - d^4\right)}{64}$$




$$I = \frac{bh^3}{12}$$

stress=
$$\frac{\text{external load}}{\text{cross-sectional property}}$$
 $\sigma_{\text{max}} = \frac{M}{z}$ (8) $z = \frac{I}{c}$ (9)

11

12

例題1. 彎曲應力的計算 (II)

$$I = \frac{\pi D^4}{64} = 2.968 \times 10^{-11} m^{-4}$$
 $c = 2.5 \times 10^{-3} \text{ m}$ $\sigma_{\text{max}} = 4.21 \times 10^7 \text{ Pa} = 42.1 \text{MPa}$

✓ 如果這個例子中10牛頓的外力是軸向張力,材料中產生正向應力的大小為

$$\sigma = \frac{F}{A} = 0.51 \,\text{MPa}$$

- ✓ 正向應力和彎曲應力相比較,差了足足有80倍左右。
- ✓ 最大變形量: y_{max}=5.61×10⁷E⁻¹m.
- ✓ 材料產生的軸向變形大小為

$$\delta = \frac{FL}{EA} = 1.02 \times 10^5 E^{-1} \text{m}$$

✓ 這個例子中兩種受力方式變形量大小的比較,差距超過五百倍。

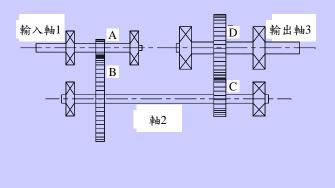
結構設計上一些重要的概念

- ✓ 如果結構受力後產生的應力超過材料的**降伏強度或抗拉強度**,結構本身會產生永久性的破壞,就叫作結構的強度不足。
- ✓ 結構的剛性不足時,受力後產生的變形量太大,即使結構不發生破壞,往往也會 影響機械系統運動的精確度,並且可能產生振動和噪音等問題。
- ✓ 結構對於張力、壓力的承受能力(包括強度和剛性),都遠遠優於對於彎矩的承 受能力。最容易做的實驗就是手握雞蛋。
- ✓ 結構設計時的一個重要原則是盡量讓結構中材料承受張力或壓力。而對現有結構中受到彎矩的部位,也要特別敏感、小心,這個部位可能最容易發生破壞。

/ 例題2. 應力計算的重叠原理 (I)✓ 試分析其在A、B雨點的應力狀態。 A B 60mm TOON tension tension

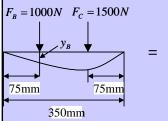
彎曲應力+正向應力=所求的應力

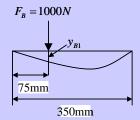
✓ 彎矩所產生的應力: $\sigma = \frac{Mc}{I} = \frac{21000 \times 2.5}{52} = 1,010$ MPa


✓ 正向拉力所産生的應力: $\sigma = \frac{F}{A} = 24.25 \text{MPa}$

✓ A點的應力為拉應力: 1010+24.25=1034.25MPa

✓ B點的應力為壓應力: 1010-24.25=985.75MPa




✓ 三個齒輪軸截面的轉動慣量分別為 I_1 =6× 10^3 mm⁴、 I_2 =2× 10^4 mm⁴、 I_3 = 10^5 mm⁴,材料的彈性模數E為 207GPa,軸I、軸I2在齒輪I4、I5 一次 中心 2000 中心 2

例題3. 齒輪軸剛性的計算 (III)

$$y_{B1} = \frac{F_B a^2 b^2}{3EIL} = \frac{1000 \,\text{N} \times (75 \,\text{mm})^2 \times [(350 - 75) \,\text{mm}]^2}{3 \times 207 \times 10^9 \,\text{N/m}^2 \times 2 \times 10^4 \,\text{mm}^4 \times 350 \,\text{mm}} = 0.0978 \,\text{mm}$$

$$y_{B2} = \frac{F_c ab}{6EIL} (L^2 - a^2 - b^2)$$

$$=\frac{1500N\times75mm\times\big(350-75\big)mm}{6\times207\times10^9\times2\times10^4\times350}\Big[\big(350mm\big)^2-\big(75mm\big)^2-\big(275mm\big)^2\Big]=0.14mm$$

例題3. 齒輪軸剛性的計算 (IV)

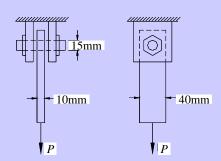
✓ B點的變形也可以用重疊原理的概念來計算:

$$y_B = y_{B1} + y_{B2} = 0.0978$$
mm $+ 0.14$ mm $= 0.2378$ mm

√ 齒輪A和齒輪B咬合點上因為相互推拒的力量可能產生的最大間隙為

$$y_A + y_B = 0.0566 + 0.2378 = 0.2944$$
mm

直接剪力


- ✓ 懸臂樑或簡支樑在受到剪力時,除了會因彎矩而產生張應力、壓應力等正向應力之外,在受到剪力作用的截面也會產生另一種形態的應力叫作「剪應力(shear stress)」。剪應力產生的原因相當多,如圖中螺栓所受到的是「直接剪力(direct shear)」。
- \checkmark 剪應力: $\tau = \frac{F}{A_c}$ (11)

例題4. 螺栓的直接剪應力計算

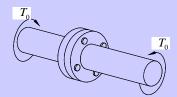
P=500N

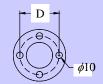
$$A_s = \frac{\pi d^2}{4} = \frac{\pi (15)^2}{4} = 176.7 \,\text{mm}^2$$

$$\tau = \frac{P}{A_s} = \frac{500}{176.7} = 2.8 \frac{N}{mm^2} = 2.8 MPa$$

例題4. 螺栓的直接剪應力計算

- ✓ 假設受扭矩 T_0 =100N·m,且D=50mm,螺栓直徑 d=10mm。
- ✓ 截面積:

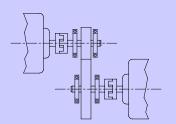

$$A = \frac{\pi \times d^2}{4} = \frac{\pi \times 10^2}{4} \,\text{mm}^2 = 78.56 \,\text{mm}^2$$


✓ 作用在螺栓上的剪力P可由扭矩計算:

$$T_0 = P \times \frac{D}{2} \Rightarrow 100 \,\text{N} \cdot \text{m} = P \times \frac{50}{2} \,\text{mm} \Rightarrow P = 4000 \,\text{N}$$

✓ 四支螺栓中直接剪應力大小為:

$$\tau = \frac{P}{4 \times A} = \frac{4000}{4 \times 78.56} \frac{N}{\text{mm}^2} = 12.73 \text{MPa}$$


22

剪應力和剪應變

✓ 一材料上下均受到剪應力作用時,其形狀不會被壓縮或拉伸,而是垂直面的角度上會產生變化,這個角度變化,少即稱作剪應變。

- ✓ 虎克定律: τ = Gγ (12)
- ✓ G稱作材料的「剪力彈性模數(modulus of elasticity in shear)」。
- ✓ 三種剪應力型態:直接剪應力、垂直剪力和扭轉剪 應力。
- ✓ 垂直剪力產生的剪應力大小和因彎矩產生的正向應力相比,通常都太小而可以忽略不計。
- ✓ 扭轉剪應力的計算在軸的設計、分析上是非常關鍵的。

扭轉剪應力

✓ 當一軸受到這樣的扭力作用時,材料本身會產生扭轉剪應力,這個扭轉剪應力的 大小也直接決定了軸的材料是否會破壞。扭轉剪應力:

$$\tau = \frac{Tr}{I} \quad (13) \qquad \tau_{\text{max}} = \frac{Tc}{I} \quad (17)$$

- ✓ 軸心剪應力為零。
- ✓ J是軸的「極慣性矩(polar moment of inertia)」,定義為:

$$J = \int r^2 dA \qquad (14)$$

- ✓ 實心圓軸的極慣性矩為 $J = \frac{\pi d^4}{32}(15)$, 空心圓軸的極慣性矩為 $J = \frac{\pi (D^4 d^4)}{32}(16)$
- ✓ 極剖面模數:

$$Z_p = \frac{J}{c} \qquad \tau_{\text{max}} = \frac{T}{Z_p} \quad (18)$$

23

例題5. 扭轉力作用下的應力狀態

- ✓ 馬達功率為750W,工作轉速1750rpm,一傳動軸直徑為10mm,此傳動軸在工作過程中的最大扭轉剪應力為何?
- ✓ 功率(Watt)=抽力(N·m)×轉速(rpm)× $\frac{2\pi}{60}$ (20)

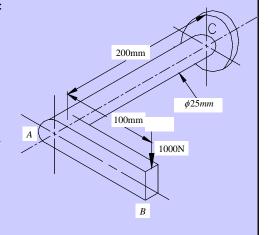
$$1750\ rpm=183\ rad/s$$

$$T = \frac{750}{183} = 4.098(N \cdot m) = 4,098(N \cdot mm)$$

$$J = \frac{\pi d^4}{32} = \frac{\pi (10)^4}{32} = 982 (\text{mm}^4)$$

$$\tau_{\text{max}} = \frac{Tc}{J} = \frac{(4098)(5)}{982} = 20.87 \text{(MPa)}$$

例題6. 扭轉及彎曲組合應力和位移 (I)


- ✓ 試求圖中A、B點的位移,以及固定端最大應力。
- ✓ 尖端受到1000N的負荷,A點位移量:

$$I = \frac{\pi D^4}{64} = \frac{\pi \times (0.025)^4}{64} = 2 \times 10^{-8} \,\text{m}^4$$

$$y_{\text{max}} = \frac{WL^3}{3EI}$$

$$= \frac{1000 \,\text{N} \times (0.2 \,\text{m})^3}{3 \times 207 \times 10^9 \,\text{N/m}^2 \times 2 \times 10^{-8} \,\text{m}^4}$$

$$= 6.4 \times 10^{-4} \,\text{m}$$

✓ 扭矩所造成的角位移:

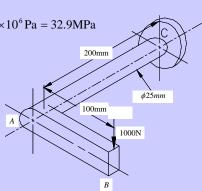
$$\theta = \frac{TL}{GJ} \quad (21)$$

$$J = \frac{\pi D^4}{32} = \frac{\pi \times (0.025 \text{m})^4}{32} = 3.8 \times 10^{-8} \text{m}^4$$

 $T = 1000 \,\mathrm{N} \cdot 0.1 \,\mathrm{m} = 100 \,\mathrm{N} \cdot \mathrm{m}$

$$\theta = \frac{TL}{GJ} = \frac{100 \,\text{N} \cdot \text{m} \times 0.2 \text{m}}{80 \times 10^9 \,\text{N/m}^2 \times 3.8 \times 10^{-8} \,\text{m}^4} = 0.0066 (\text{rad})$$

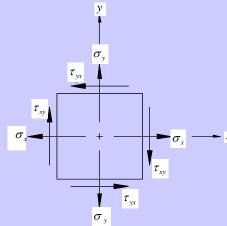
✓ B點的總位移為:


$$6.4 \times 10^{-4} \, \text{m} + 0.1 \, \text{m} \times 0.0066 = 6.4 \times 10^{-4} \, \text{m} + 6.6 \times 10^{-4} \, \text{m} = 1.3 \times 10^{-3} \, \text{m}$$

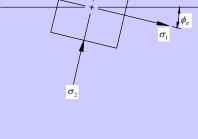
例題6. 扭轉及彎曲組合應力和位移 (III)

✓ 彎曲正向應力:
$$\sigma_{\max} = \frac{MC}{I} = \frac{1000 \text{N} \times 0.2 \text{m} \times 0.025/2 \, \text{m}}{2 \times 10^{-8} \, \text{m}^4} = 1.25 \times 10^8 \, \text{Pa} = 125 \text{MPa}$$
 ✓ 扭轉剪應力:

$$\tau_{\text{max}} = \frac{TC}{J} = \frac{100\text{N} \cdot \text{m} \times 0.025/2 \text{ m}}{3.8 \times 10^{-8} \text{ m}^4} = 32.9 \times 10^6 \text{ Pa} = 32.9 \text{MPa}$$


- ✓ 兩個應力的"總和"是多少呢?
- ✓ 莫耳圓可以清楚描述結構中某一點的應力

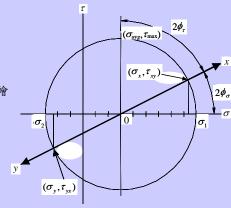
200mm


二維應力元素

- ✓ 通常在表達材料上某一點的應力狀態時,我們可以想像在這一點上有一個方形的「應力元素(stress element)」。
- ✓ 為了保持力平衡,在應力元素中正向應力和剪應力都是成雙成對出現。
- ✓ 以張應力為正,壓應力為負。
- x√ τ_{xy}代表施於應力元素表面的剪應力方向 為垂直於 x且平行於y軸。
 - ✓ 剪應力的正負符號則是順時針方向的剪 應力為正,逆時針方向的剪應力為負。

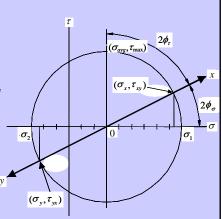
應力法則

- ✓ 材料上某一點上同樣的應力狀態,在轉動我們應力元素定義的座標軸時,其正向應力及剪應力數值也會隨著變動。
- ✓ 設計者感興趣的是,在這一點上最大正向應 力是多少?最大剪應力是多少?最大正向應 力、剪應力發生在哪一個方向、平面?
- \checkmark x、y方向在某一個特定角度時完全沒有剪應力,只剩下正向應力 σ_1 、 σ_2 。
- \checkmark 其中 $σ_1 > σ_2$,此時 $σ_1$ 為「最大主應力」,或稱作「第一主應力」,也就是在應力元素所有不同方向上,在此方向正向應力是最大的。而在與 $σ_1$ 方向垂直之則是「最小主應力」,或稱作「第二主應力」。

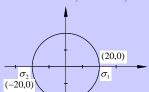


$$\sigma_{1} = \frac{\sigma_{x} + \sigma_{y}}{2} + \sqrt{\left(\frac{\sigma_{x} - \sigma_{y}}{2}\right)^{2} + \tau_{xy}^{2}} \qquad \sigma_{2} = \frac{\sigma_{x} + \sigma_{y}}{2} - \sqrt{\left(\frac{\sigma_{x} - \sigma_{y}}{2}\right)^{2} + \tau_{xy}^{2}}$$

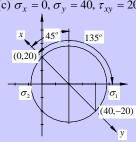
$$\phi_{\sigma} = \frac{1}{2} \tan^{-1} \left[2\tau_{xy} / \left(\sigma_{x} - \sigma_{y}\right) \right]$$

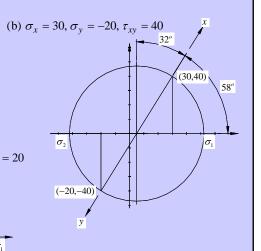


- ✓ 某一受力狀態下已知 σ_x 、 σ_y 、 τ_{xy} 。
- ✓ 建構一個σ-τ平面。
- ✓ 繪出 (σ_x, τ_{xy})、(σ_y, τ_{yx})兩點。
- ✓ 連結此兩點的線段與橫座標之交點。
- \checkmark 以 $\left(\frac{\sigma_x + \sigma_y}{2}, 0\right)$ 為圓心 , $\sqrt{\left(\frac{\sigma_x \sigma_y}{2}\right)^2 + \tau_{xy}^2}$ 為半徑繪 成一圓 , 即為莫耳圓 。

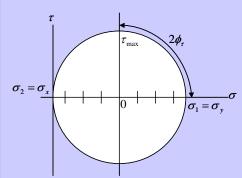

莫耳圓導讀

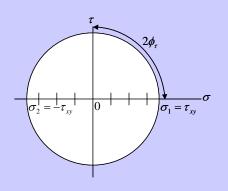
- ✓ 莫耳圓與 σ 軸交於 $(\sigma_1,0)$ 和 $(\sigma_2,0)$ 雨點。
- ✓ 由莫耳圓得知,最大剪應力發生在 $(\sigma_{\text{avg}}, \tau_{\text{max}})$ 點上。
- ✓ 由莫耳圓圓心連結 (σ_x, τ_{xy}) 之射線,可以對應應力元素上的x軸。
- 圓心連結(σ_y, τ_{yx})之射線,可對應應力元素之y =
 軸。
- ✓實際應力元素上的角度,在莫耳圓上被放大了 兩倍。
- ✓ 一個莫耳圓表達了一特定應力狀態,可以立即 讀出此應力狀態在不同座標方向上的正向應力 和剪應力數值。




例題7. 莫耳圓的建構

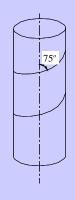
(a)
$$\sigma_x = 20$$
, $\sigma_y = -20$, $\tau_{xy} = 0$

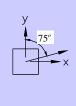

(c)
$$\sigma_x = 0$$
, $\sigma_y = 40$, $\tau_{xy} = 20$



31

例題8.、9. 純單軸拉力負荷與純扭力負荷


$$\tau_{\rm max} = \frac{1}{2}\sigma_{y}$$
 at 45 degrees



$$\sigma_{\rm max} = \tau_{xy}$$
 at 45 degrees

例題10. 三維莫耳圓 (I)

- ✓ 到目前為止所討論莫耳圓的例子,都是屬於平 面應力。
- ✓ 右圖是一個由薄鋼板捲成的壓力筒,每一層鋼板間相接的角度是75度,鋼板與鋼板之間以焊接的方式固定,壓力筒內部壓力為0.875MPa, 鋼板厚度1mm,鋼筒的直徑為200mm。
- ✓ 設計者關切的是焊接部位應力狀況如何,最大 主應力、最大剪應力的角度是否和焊接角度重 合?

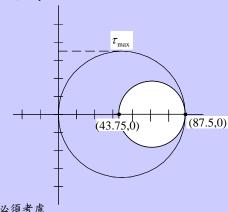
33

例題10. 三維莫耳圓 (II)

- ✓ 力容器壁上任何一點,在x方向(沿圓周方向)和y方
 - 向(壓力筒的軸向)都受到拉伸:

$$\sigma_y = \frac{PD}{4t} = 43.75 \text{MPa (Tension)}$$

$$\sigma_x = \frac{PD}{2t} = 87.5 \text{MPa (Tension)}$$


✓ 如果考慮x和y方向:

$$\tau = \frac{87.5 - 43.75}{2} = 21.875$$

✓ 如果考慮x和z方向:

$$\tau_{\text{max}} = \frac{87.5 - 0}{2} = 43.75$$

✓ 如果兩個主應力值同為正或同為負,我們必須考慮 三圍莫爾圓才能找出真實的最大剪應力。

結構如何產生破壞?

- ✓ 應力分析目的為何?
 - ➡ 希望能對所設計的機械結構強度做一預測,了解在此負載狀況下會不會產生破壞。
- ✓ 結構如何產生破壞?
- ✓ 應力破壞
 - 最大正向應力破壞理論
 - 最大剪應力破壞理論
 - 最大應變能破壞理論
 - ⇒ 以上三者都是以萬能試驗機對材料試片做拉伸試驗,在單軸拉力的狀態下測 試得到的。
- ✓ 側潰
- ✓ 疲勞

最大正向應力破壞理論

- ✓ 如果結構最大正向應力大於材料的「容許應力(allowable stress)」,便預測會產生破壞。
- ✓ 脆性材料破壞通常是直接斷裂,因此容許應力通常考慮採用材料的「抗拉強度 (ultimate strength)S_u」;延展性材料的破壞模式通常是先產生降伏(yield)造成永久變 形,因此考慮容許應力時通常採用材料的「**降伏強度(yielding strength)S**_v」。
- \checkmark 設計上考慮材料破壞時的容許應力,通常還會加入一個「**設計係數(design factor)**」 N,或者稱作「**安全係數(safety factor)**」,將容許應力比較保守地設定在 S_u/N 或者 S_v/N 。
- ✓ 設計係數的考量,主要是因為在做應力計算時,設計者對材料的性質、材料的品質 及結構所受到負荷的大小,都可能存在相當程度的不確定性,加上應力計算所使用 的公式,相對於真實負載情況,也難免做了某種程度的簡化。
- ✓ 設計係數的訂定和設計者對問題的了解與信心有關。
- ✓ 通常來說設計係數N=3是個合理的數字。在靜態結構、延展性材料,且設計者對材料的性質、結構所受到負荷的大小和結構分析的方法,都相當了解時,設計係數可以定在N=2。過高的設計係數固然比較"安全",但也造成結構「過度設計(over design)」,使得結構笨重、浪費材料等。

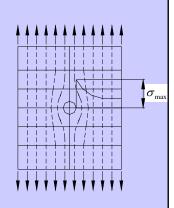
最大剪應力破壞理論

- ✓ 結構內產生的最大剪應力大於材料的容許剪應力時,便會產生破壞。
- ✓ 以延展性材料來說,容許剪應力通常考慮採用材料的「**剪力降伏強度**(yielding strength in shear)」 $S_{\rm sv}$ 。
- ✓ 材料受到單軸拉伸時, $\tau_{\max} = \frac{1}{2}\sigma_y$,可以說明當一個延展性材料試片,在拉伸實驗中開始降伏時,此時試片中的正向應力大小即為材料的降伏強度 S_y ,而此時試片中的最大剪應力即訂為材料的剪應力降伏強度 S_{sy} ,同時 $S_{\mathrm{sy}} = \frac{1}{2}S_y$ 。

√ 例題11.壓力容器之最大剪應力破壞 (I)

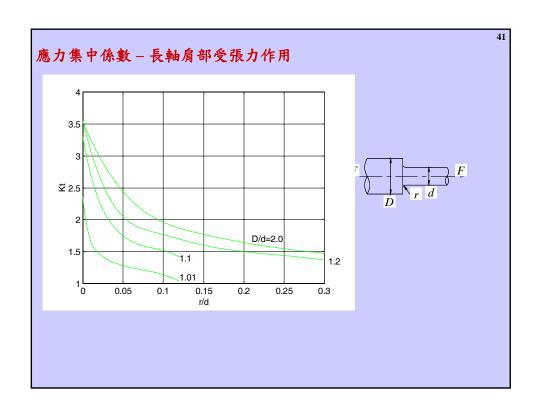
➡ 不會發生剪應力破壞

$$S_{sy} = \frac{1}{2}S_y = 145\text{MPa}$$
 $\tau_{max} = 43.75\text{MPa} \le \frac{S_{sy}}{N} = \frac{145}{3}\text{MPa} = 48.33\text{MPa}$

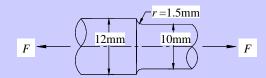

最大應變能破壞理論

- ✓ 單純正向應力或單純剪應力的破壞理論都不能完全適用,這時候對機械結構破壞的預測,應該考慮「最大應變能破壞理論(maximum strain energy theory of failure)」。
- ✓ 單位體積內储存的應變能: $U = \frac{1}{2}kx^2 = \frac{F^2}{2k}$ $u = \frac{1}{2}E\varepsilon^2 = \frac{\sigma^2}{2E}$ (25)
- ✓ 不管在如何複雜的應力狀態下,只要產生的總單位體積應變能大於材料試片做單軸 拉伸試驗產生降伏時的單位體積應變能,結構即產生破壞。
- ⇒「**等效應力(equivalent stress)」**也被稱作「**von Mises應力**」,結構的等效應力大於 降伏強度時,產生的總單位體積應變能,將會大於材料試片做單軸拉伸試驗產生降 伏時的單位體積應變能,因此最大應變能破壞理論預測當等效應力 $\sigma' >$ 時,結構 即產生破壞。
- ⇒ 例題11. 壓力容器之最大應變能破壞 (II)

$$\sigma' = \sqrt{\frac{(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_1 - \sigma_3)^2}{2}}$$
(26)
$$\sigma' \le \frac{S_y}{N} = \frac{290}{3} = 96.67 \text{MPa}$$
$$\sigma' = \sqrt{\frac{(87.5 - 43.8)^2 + (87.5 - 0)^2 + (43.8 - 0)^2}{2}} = 75.70 \text{MPa}$$

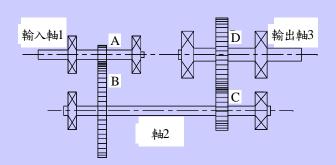

應力集中

- ✓ 前面介紹的這些應力計算的基本公式,都是假設結構本身並沒有任何不規則的幾何形狀,但實際結構設計時常常可能必須在結構上挖孔、銑槽,以和其他的零件做配合,達成功能上的目的。
- ✓ 例如齒輪軸、鏈條扣、皮帶滑輪通常有數種不同的直徑尺寸用來傳動動力元件與軸承的裝載。
- ✓ 在結構幾何形狀上突然有變化的區域,受力時便會造成應力集中的現象。
- ✓ 應力集中現象可想像成應力是一股流動的「應力流 (stress flow)」。
- ✓ 應力集中係數 $K_t = \frac{\sigma_{\text{max}}}{\sigma_0}$ (27), σ_0 稱作「名目應力(nominal stress)」


39

應力集中係數 - 平板中央有一個圓孔

$$\frac{D}{d} = \frac{12\text{mm}}{10\text{mm}} = 1.20$$
 $\frac{r}{d} = \frac{1.5\text{mm}}{10\text{mm}} = 0.15$


$$\Rightarrow K_t=1.60$$

F=9800N
$$A = \frac{\pi d^2}{4} = \frac{\left[(\pi) (10 \text{mm})^2 \right]}{4} = 78.5 \text{mm}^2$$

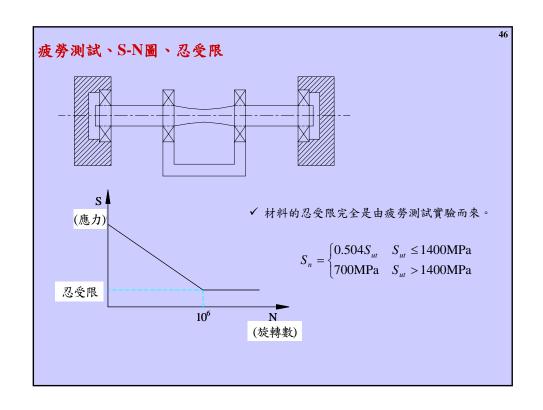
$$\sigma_{\text{max}} = K_i \sigma_0 = \frac{K_i F}{A} = \frac{1.60(9800 \text{N})}{78.5 \text{mm}^2} = 199.6 \text{MPa}$$

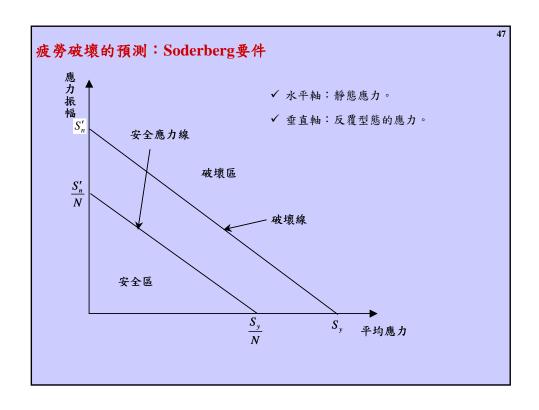
反覆形式負荷

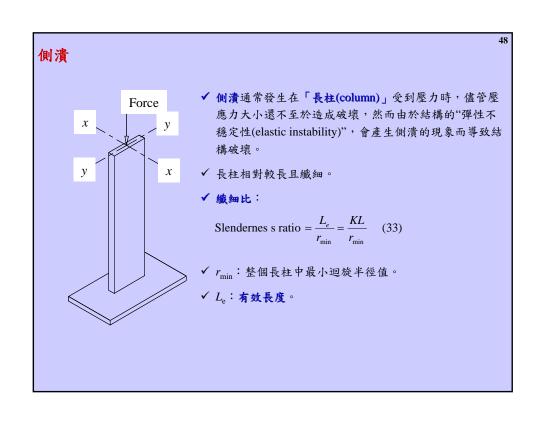
- ✓ 考慮軸不斷旋轉的狀況,軸上某一點的應力狀態,也不斷做壓應力一張應力一壓 應力一張應力的轉換,這樣的應力狀態,叫作「反覆應力(alternating stress)」。
- ✓ 疲勞破壞最大的特徵,就是在結構應力超過疲勞強度時,材料並不會立即產生破壞,而是在反覆受力超過一定的次數後,才會發生破壞。

43

平均應力與應力振幅

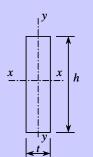

✓ 平均應力:反覆應力狀態中靜態、保持不變的部分。


$$\sigma_m = \frac{\left(\sigma_{\text{max}} + \sigma_{\text{min}}\right)}{2} \quad (28)$$

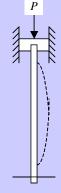

✓ 應力振幅: 反覆應力狀態中動態、反覆變動的部分。

$$\sigma_{a} = \frac{(\sigma_{\text{max}} - \sigma_{\text{min}})}{2} \quad (29)$$
stress
$$\sigma_{m}$$

$$0$$
time



$$I = \frac{\pi D^4}{64} \qquad A = \frac{\pi D^2}{4}$$


$$r = \sqrt{\frac{I}{A}} = \sqrt{\frac{\pi D^4/64}{\pi D^2/4}} = \frac{D}{4}$$

$$x$$
- x
幸由 : $I = \frac{ht^3}{12}$ $r = \sqrt{\frac{I}{A}} = \sqrt{\frac{th^3/12}{th}} = \sqrt{\frac{h^2}{12}} = 0.289 \ h$
 y - y
幸由 : $I = \frac{th^3}{12}$ $r = \sqrt{\frac{I}{A}} = \sqrt{\frac{ht^3/12}{th}} = \sqrt{\frac{t^2}{12}} = 0.289 \ t$

y-y 韩 :
$$I = \frac{th^3}{12}$$
 $r = \sqrt{\frac{I}{A}} = \sqrt{\frac{ht^3/12}{th}} = \sqrt{\frac{t^2}{12}} = 0.289 t$

有效長度

 $L_e = KL \quad (32)$

K=1.0 *K*=1.0

K=0.5 K=0.65

K=2.1

K=0.7 K=0.8

51

52

長柱側潰的預測:尤拉公式

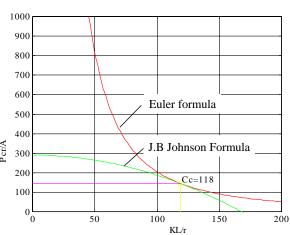
✓ 長柱側潰**臨界負荷** P_{cr} 的大小可以用「尤拉公式(Euler Formula)」來計算:

$$P_{cr} = \frac{\pi^2 EA}{\left(KL/r\right)^2} \quad (34)$$

- ✓ 長柱側潰的臨界負荷和材料的強度(如材料的抗拉強度、降伏強度)完全無關, 僅和材料的彈性模數,也就是材料的剛性有關。
- ✓ 材料的剛性相同,因此側潰的臨界負荷完全相同,也就是說,如果判定結構主要破壞模式是側潰,以便宜的低碳鋼和昂貴的合金鋼結構上的性能表現完全相同。

短柱側潰的預測:J.B. Johnson公式

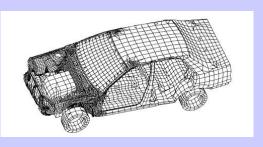
✓ 纖細比較小的「短柱(short column)」,尤拉公式並不適用。此時受到壓力時的破壞,比較類似於一般壓應力破壞,而臨界負荷的大小則是用以下的「J.B. Johnson公式」來計算:

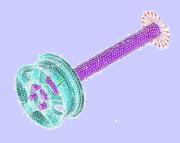

$$P_{cr} = AS_{y} \left[1 - \frac{S_{y} (KL/r)^{2}}{4\pi^{2} E} \right]$$
 (35)

- ✓ 臨界負荷的大小,除了和纖細比、材料剛性相關之外,也和材料的強度有關。
- \checkmark 當纖細比趨近於零時,短柱的臨界負荷 P_{cr} 趨近於 AS_{y} ,也就是 $\frac{P_{cr}}{A}$ 接近 S_{y} 時即產生單純壓應力的破壞。
- ✓ 長柱、短柱如何區分?

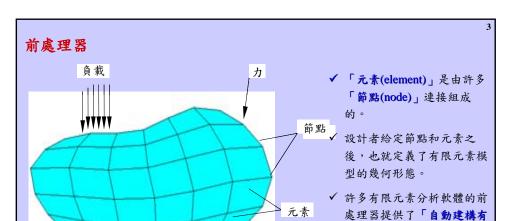
✓ 右圖中把兩個公式同時畫在圖 上,可以看到兩條曲線有一個 交點,這個交點叫作「長柱常 數(column constant)」。

$$C_c = \sqrt{\frac{2\pi^2 E}{S_y}}$$
 (36)

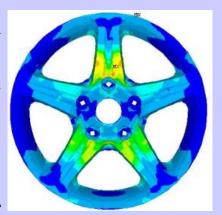

- \checkmark 如果纖細比大於長柱常數 C_c , 應採用尤拉公式計算其側潰的 V^{13} 臨界負荷。
- ✓ 纖細比小於 C_c 時,則應用J.B.Johnson公式來計算其臨界負荷。



第三章 有限元素分析


- ✓ 在機械設計上實際作應力分析時,我們很快便會發現這些基本的公式並不夠用, 主要原因是在實際機械設計上我們所遇到的幾何形狀往往複雜得多。
- ✓ 現在來說,設計繪圖和結構分析已經不再是兩個不同部門的工作。「有限元素分析(finite element analysis)」已經成為機械設計上非常重要的電腦輔助分析工具,大部分有限元素分析軟體都已經結合了建構幾何模型的電腦輔助設計軟體,成為一套整合的「電腦輔助工程(Computer Aided Engineering, CAE)」軟體。
- ✓ 有限元素方法可以分析熱傳學、流體力學、電磁學等不同領域的問題。

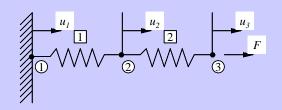
有限元素分析的一般程序


- ✓ 在結構分析的應用上,有限元素分析軟體可以定義複雜的幾何形狀,給定各種不同的負載狀況和邊界條件,分析在這個負載和邊界條件之下,結構所產生的應力、變形量,甚至做結構振動上的分析等。
- ✓ 前處理→求解→後處理
- ✓ 前處理器主要的功能,是讓設計者可以在非常友善的使用者介面下,定義有限 元素分析模型的幾何形態、負載和邊界條件。

- ▼ 有限元素模型負載的形式,最常見的是在節點上施加的力,或者在元素邊界上施加的壓力。
- ✓ 有限元素模型邊界條件的設定,則是在模擬結構體和其周遭環境之間的關係,通常 是以節點的自由度來表示。

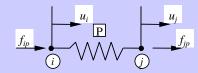
求解器與後處理器

- ✓ 求解器中的動作,是先依據設計者定義的有限元素模型(包括節點、元素、負載和邊界條件的定義),建立出模型的系統方程式,再對其求解。
- ✓ 後處理器將運算過後得到的結果以圖形的方式輸出,使設計者可以得到更直覺的感受。
- ✓ 例如右圖是一個汽車輪圈在軸心施加彎曲力矩,經過有限元素分析,由後處理輸出之圖形顯示,其中各節點(或元素)的應力值,可以用不同的顏色顯示在有限元素模型上(通常以紅色代表高應力區域,藍色代表低應力區域),結構變形量也可以放大後直接畫在圖上,設計者可以一目了然地看出結構受力後變形和應力分佈狀況。



限元素網格(automatic mesh generation)」的功能。

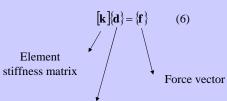
.


5

有限元素法模型的建立 - 一維彈簧系統

- ✓ 有限元素模型中共有三個節點。
- ✓ 一般有限元素分析軟體都會建有一個「元素庫(element library)」,使用者可以根據其所分析結構之特性,選定其所需要的元素種類,並給定該元素所需要的材料性質。一維彈簧的有限元素模型中,每個節點只有水平單向移動的自由度。
- ✓ 這裡定義彈簧元素1、元素2的彈性常數分別為k₁、k₂。
- ✓ 定義節點的座標和元素組成方式。
- ✓ 定義這個有限元素模型的負載和邊界條件。

一個典型的彈簧元素

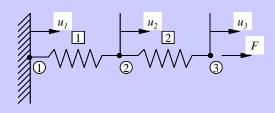

$$f_{ip} = k_p \left(u_i - u_j \right) \tag{1}$$

$$f_{jp} = k_p \left(u_j - u_i \right) \tag{2}$$

$$f_{ip} = k_p u_i - k_p u_j \tag{3}$$

$$f_{jp} = -k_p u_i + k_p u_j \qquad (4)$$

 $\begin{bmatrix} k_p & -k_p \\ -k_p & k_p \end{bmatrix} \begin{bmatrix} u_i \\ u_j \end{bmatrix} = \begin{cases} f_{ip} \\ f_{jp} \end{cases}$ (5)


Displacement vector

F K F F F

✓ 節點的座標(長度L)和元素的材料性質 (截面積A、彈性模數E),都表現在元素 剛性矩陣中,而元素是由哪些節點連接而 成,則表現在系統剛性矩陣的組合方式。

$$\begin{bmatrix} \mathbf{k} \end{bmatrix} = \begin{bmatrix} \frac{EA}{L} & -\frac{EA}{L} \\ -\frac{EA}{L} & \frac{EA}{L} \end{bmatrix}$$
(11)

將有限元素模型轉換成系統方程式 (I)

✓ 相對於元素1、元素2,第(5)式轉變為

$$\begin{bmatrix} k_1 & -k_1 \\ -k_1 & k_1 \end{bmatrix} \begin{Bmatrix} u_1 \\ u_2 \end{Bmatrix} = \begin{Bmatrix} f_{11} \\ f_{21} \end{Bmatrix}$$
 (7)

$$\begin{bmatrix} k_2 & -k_2 \\ -k_2 & k_2 \end{bmatrix} \begin{cases} u_2 \\ u_3 \end{cases} = \begin{cases} f_{22} \\ f_{32} \end{cases}$$
 (8)

/

9

(12)

將有限元素模型轉換成系統方程式 (II)

節點1:
$$\sum forces = 0 \Rightarrow f_{11} = F_1$$
 $k_1u_1 - k_1u_2 = F_1$ 節點2: $\sum forces = 0 \Rightarrow f_{21} + f_{22} = F_2$ 節點3: $\sum forces = 0 \Rightarrow f_{32} = F_3$ $-k_2u_2 + k_2u_3 = F_3$

$$\begin{bmatrix} k_1 & -k_1 & 0 \\ -k_1 & k_1 + k_2 & -k_2 \\ 0 & -k_2 & k_2 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{cases} F_1 \\ F_2 \\ F_3 \end{cases}$$
(9)

$$[\mathbf{K}]\{\mathbf{D}\} = \{\mathbf{F}\}\tag{10}$$

K: 系統剛性矩陣或整體剛性矩陣

系統剛性矩陣的建構

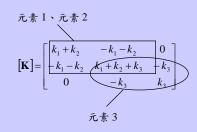
元素2

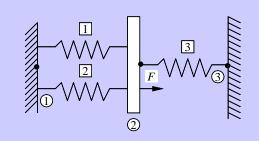
- ✓ 有限元素分析軟體的處理方式是利用共用節點上產生交互作用的概念,將各單獨元素的元素剛性矩陣,組合成為整體系統的系統剛性矩陣。
- ✓ 元素剛性矩陣組合系統剛性矩陣的過程,其實就是將元素剛性矩陣中的k值, "丟"進系統剛性矩陣中各節點自由度相對應的位置即可。
- ✓ 系統負載自然是表現在系統的外力向量 $\{F\}$,而邊界條件是表現在系統方程式中的位移向量 $\{D\}$ 中。

12

有限元素模型系統方程式求解的過程

$$\begin{bmatrix} k_1 & -k_1 & 0 \\ -k_1 & k_1 + k_2 & -k_2 \\ 0 & -k_2 & k_2 \end{bmatrix} \begin{bmatrix} 0 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} F_1 \\ 0 \\ F \end{bmatrix}$$
 (12)
$$\begin{bmatrix} k_1 + k_2 & -k_2 \\ -k_2 & k_2 \end{bmatrix} \begin{bmatrix} u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} 0 \\ F \end{bmatrix}$$
 (13)


- ✓ (12)式中,有三個線性方程式,"恰巧"也有三個未知數,所以可以順利求解。節點 1的自由度完全被限制住,因此實際上要求解的部分被縮減為(13)式
- ✓ 一般在解(13)式這種大型的線性方程式,都是用解線性代數問題中常用的「高斯 消去法(Gaussian elimination)」,將矩陣化為三角形矩陣(triangular matrix)後求出第 一個未知數,再反代回去一一求出其他未知數。
- ✓ 解這個系統方程式,可說是有限元素分析整個程序中,最耗費電腦運算時間和記憶空間的部分。
- ✓ 有限元素模型系統剛性矩陣的大小,不僅和有限元素模型中節點的個數有關,也 和每一個節點的自由度個數有關。
- ✓ 實務上可能會碰到擁有幾萬個自由度的有限元素模型,運算和儲存都是很大的問題。


例題1. 系統剛性矩陣的組合與求解 (I)

- ✓ 考慮如下圖中的三彈簧系統,三個彈簧彈性係數分別為 k_1 =100N/m、 k_2 =200N/m以及 k_3 =300N/m,且圖中作用力為F=150N,試求出節點2的位移。
- ➡ 建構元素剛性矩陣:

$$\begin{bmatrix} \mathbf{k} \end{bmatrix} = \begin{bmatrix} k & -k \\ -k & k \end{bmatrix}$$

□ 組合系統剛性矩陣:

例題1. 系統剛性矩陣的組合與求解 (II)

$$[\mathbf{K}]\{\mathbf{D}\} = \{\mathbf{F}\}$$

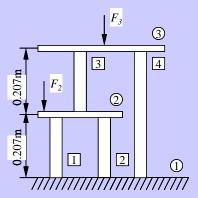
$$\begin{bmatrix} k_1 + k_2 & -k_1 - k_2 & 0 \\ -k_1 - k_2 & k_1 + k_2 + k_3 & -k_3 \\ 0 & -k_3 & k_3 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} F_1 \\ F_2 \\ F_3 \end{bmatrix}$$
 (14)

$$\begin{bmatrix} 300 & -300 & 0 \\ -300 & 600 & -300 \\ 0 & -300 & 300 \end{bmatrix} \begin{bmatrix} 0 \\ u_2 \\ 0 \end{bmatrix} = \begin{bmatrix} F_1 \\ 150 \\ F_3 \end{bmatrix}$$

$$600u_2 = 150 \Rightarrow u_2 = \frac{1}{4} \text{(m)}$$
 $F_1 = F_3 = 75 \text{N}$

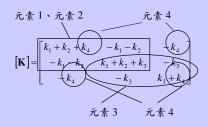
例題2. 以有限元素法求桁架結構的應力 (I)

✓ A_1 = A_2 =10cm², A_3 =5cm², A_4 =4cm², F_2 =500N, F_3 =300N. 試求出每個桁架中的受力及應力大小。


➡ 元素剛素矩陣:

$$\begin{bmatrix} \mathbf{k} \end{bmatrix} = \begin{bmatrix} \frac{EA}{L} & -\frac{EA}{L} \\ -\frac{EA}{L} & \frac{EA}{L} \end{bmatrix}$$

$$[\mathbf{k}_1] = [\mathbf{k}_2] = \begin{bmatrix} 1000 & -1000 \\ -1000 & 1000 \end{bmatrix} \times 10^6 \text{ N/m}$$


$$[\mathbf{k}_3] = \begin{bmatrix} 500 & -500 \\ -500 & 500 \end{bmatrix} \times 10^6 \text{ N/m}$$

$$[\mathbf{k}_4] = \begin{bmatrix} 200 & -200 \\ -200 & 200 \end{bmatrix} \times 10^6 \text{ N/m}$$

13

例題2. 以有限元素法求桁架結構的應力 (II)

$$10^{6} \times \begin{bmatrix} 2200 & -2000 & -200 \\ -2000 & 2500 & -500 \\ -200 & -500 & 700 \end{bmatrix} \begin{bmatrix} 0 \\ u_{2} \\ u_{3} \end{bmatrix} = \begin{bmatrix} F_{1} \\ 500 \\ 300 \end{bmatrix}$$
 (15)

$$u_2 = \frac{1}{3} \times 10^{-6} \text{ (m)}$$
 $u_3 = \frac{2}{3} \times 10^{-6} \text{ (m)}$ $F_1 = -800 \text{ (N)}$

例題2. 以有限元素法求桁架結構的應力 (III)

✓ 桁架1的應變: $\varepsilon_1 = \frac{(u_2 - u_1)}{L_1} = 1.61 \times 10^{-6}$

 \checkmark 桁架1的應力: $\sigma_1 = E\varepsilon_1 = 0.333 \text{(MPa)}$

✓ 作用力: $f_1 = A_1 \times \sigma_1 = 333(N)$

✓ 桁架3、4中的應力和作用力分別 為: $\sigma_3 = 0.333 \text{(MPa)} \ f_3 = 166 \text{(N)}$

$$\sigma_4 = 0.333 \text{(MPa)}$$
 $f_4 = 133 \text{(N)}$

15

有限元素分析軟體的應用(I)

- ✓ 一般有限元素分析軟體在求解器求解時,都會發出類似如下一連串工作訊息, 其代表的意義也分別解釋如下:
 - 讀入前處理器中建立有限元素模型之數據
 - 計算各元素的剛性矩陣
 - 將元素剛性矩陣組合成系統剛性矩陣
 - 開始高斯消去法向前消去(forward elimination)的過程
 - 開始向後反代(backward substitution) 一一求解
 - 從節點位移計算應變,再計算應力

有限元素分析軟體的應用(I)

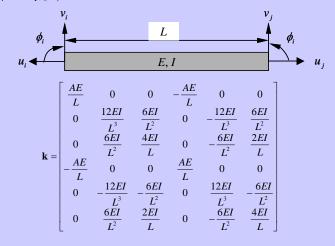
- ✓ 計算完畢後得到之節點位移量和元素或節點的應力值,設計者可以由後處理器 讀入,以圖形的方式顯示出來。
- ✓ 如同進行一個設計計畫,設計者在建立一個有限元素分析模型前,也必須要對整個模型的建立先作妥善規劃,對所要分析的問題中幾個重點必須要先了解清楚,才能做進一步的細部規劃:
 - 我們所要分析的問題是什麼?是否真正需要做有限元素分析,還是用基本 公式做簡單的計算已經足夠?
 - 這個有限元素分析是要做一個精確的、定量的分析,還是只是要做粗略的、定性的分析?是要分析整個結構,還是要做精確的局部分析?
 - 如何選擇適當的元素?如何適切地模擬結構的負載和邊界條件?

20

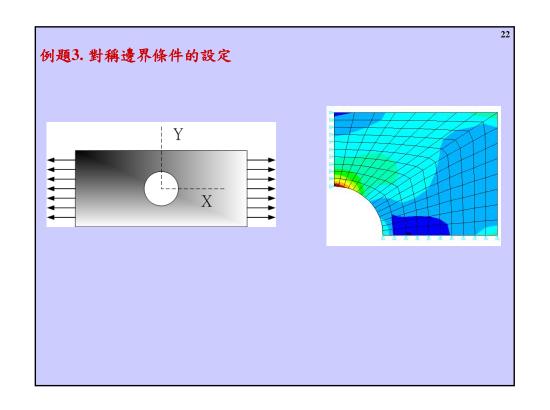
常見的元素種類 (I)

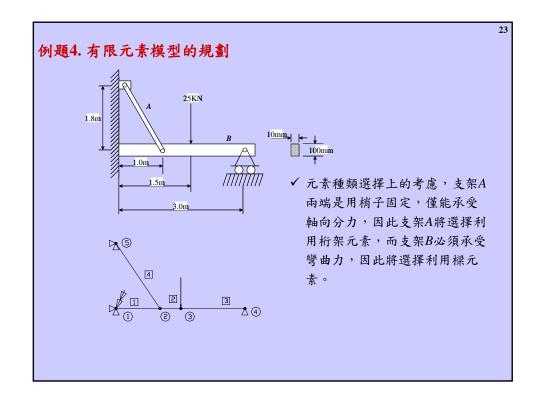
✓ 選用元素種類最重要的考量為元素中每一節點的自由度。

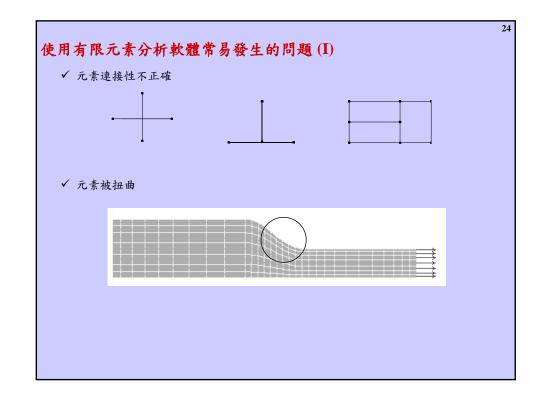
- 2節點
- x、y移動自由度
- 僅能做軸向力分析

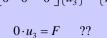


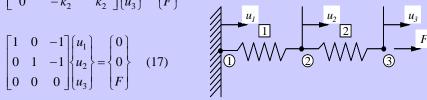
- 2節點
- •x、y移動自由度
- Z方向轉動自由度
- 能承受彎矩


樑元素


樑元素


✓ 二維樑元素節點上除了承受軸向力之外,還能承受剪力和彎矩,每個節點i、j各 有水平、垂直、旋轉等三個自由度,因此一個典型的二維樑元素的元素剛性矩陣 是一個如下6×6的矩陣。

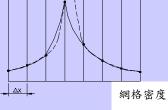


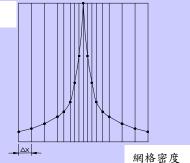

使用有限元素分析軟體常易發生的問題 (II)

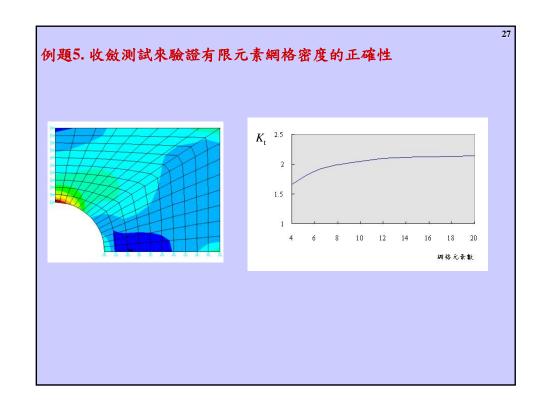
✓ 邊界條件不足

$$\begin{bmatrix} k_1 & -k_1 & 0 \\ -k_1 & k_1 + k_2 & -k_2 \\ 0 & -k_2 & k_2 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ F \end{bmatrix}$$
 (16)

$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ F \end{bmatrix}$$
 (17)




如果節點1的位移自由度沒有被限制住,會造成一個「剛體運動(body motion)」。


使用有限元素分析軟體常易發生的問題 (III)

- ✓ 有限元素分析中單位的訂定
- ✔ 有限元素模型網格密度較大,在應力集中區域的最大應力計算也較準確。

應力

實例研究(一)

實例硏究(二)

實例研究(三)

實例研究(四)

